POTENTIAL THEORY IN

Chapter 8 THREE DIMENSIONS

The theory of the preceding chapter, when generalized to three or more
dimensions becomes considerably complicated. The development of this
theory during the 19th century was motivated to a considerable extent by
physical intuition. The study of fields of force and velocity of fluid flows
led to the theorems on integration in severable variables which are in this
chapter. More modern expositions of this material lean heavily on algebraic
developments of the late 19th and early 20th centuries. Although the
mathematics has significantly improved with the introduction of the notions
of differential forms and invariance, the intuition provided by concrete
interpretations has been lost. We shall lean heavily on the interpretation
by fluid flows, thereby sacrificing some mathematical rigor for a little bit of
concreteness. We certainly should point out that the importance of the
subject of differential forms by far transcends its use in putting the divergence
theorem on firm ground. This theory has had major impact on all branches
of modern research mathematics and physics. We have however selected to
complete our story rather than begin to suggest a new one.

A fluid flow is given by a function ¢(x,, ¢) defined for x, in some domain
Din R? and f on an interval in R about the origin. We require that

(i) ¢ is continuously differentiable in all variables,
(i) &(xq,0) =x,, all xo€ D,
(iii) for fixed ¢, the transformation x, — ¢(X,, 1) is one-to-one and has a
nonsingular differential.
611



612 8 Potential Theory in Three Dimensions

The value ¢(x,, ¢) represents the space position at time ¢ of the particle
which was at x,, at time t = 0. We shall refer to x, as the particle coordinate
and to x = ¢(X,, ¢) as the space coordinate. Condition (ii) asserts that the
particle and space coordinates coincide at = 0. Condition (iii) asserts that
the relation between particle and space coordinates at any time ¢ is invertible:
we can recapture the initial position of a particle from its position at any
time. We shall denote the inverse of ¢ by ¥: x = ¢(x,, #) if and only if
Xo = \II(X, t )

The curve given by x = ¢(X,, ¢) is the path of metion of the particle x,. The
velocity of x, at time ¢ is, of course, (0dp/0f)(x,,1). If we fix the time ¢,
the collection of velocity vectors forms a field, denoted by v(x, ¢) (referring of
course to spatial coordinates) called the velocity field of the flow. v(x,¢)
is the velocity of the particle at x at time 2. We have already noted that

0P(xo, 1)

y ) =
Yoo D 0t xo=wxn 8.1)

If the velocity field is independent of time, we say that the flow is steady.
The velocity field of a flow completely determines the flow: the path of
motion x = u(¢) of a particle x, is the solution of the differential equation

ou
ar ™0 (8.2)
u(0) = x,

By (8.1) the solution is given by u(f) = ¢(x,, ), for (8.1) can be rewritten as

0
V(o 1), 1) = W

Thus the equation of flow is recaptured from the velocity field by solving
Equation (8.2).

This introduction recapitulates what we have already learned about fluid
flows. In the subsequent section we shall develop the mathematics required
to study the evolution through time of a given mass of fluid. We shall see
that the various laws of conservation of physics (mass, energy) correspond
to mathematical theorems (divergence theorem, Stokes’ theorem).
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8.1 Divergence and the Equation of Continuity

Let us begin with a fluid flowing through a domain in R3 according to the

equation x = &(x,, 7). According to reasonable physical assumptions, if
we define the density at a point p as the limit

()—limmaSSA
PIR) = U oTA

as the domain A shrinks uniformly down to p, then the mass of any domain
Is given by integration of the density function p. In our case, that of a fluid
in motion, we shall express the density of the fluid at the point x at time 7
as p(x, 1). Thus, for any domain D, the mass of fluid in D at time ¢ is

po(x, 1) dv

We can also consider the density at a particle: p(d(xo, 1), 1) is the density
of the fluid at time ¢ at the particle (originally at) x,. (More generally, we
always have this option of referring measurable quantities to either the spatial,
or the particle coordinates. This option is a source of some confusion, as
well as deepening, of our understanding.)

The law of conservation of matter asserts that the mass of a given object
is independent of time. If we fix a domain D, the space occupied at time ¢
by the fluid originally in D is the domain D, = {$(xy,1): X, € D}. The
mass of fluid in D, is

fD p(x, 1) dV

Since mass must be conserved, this must be independent of 7. Thus the
law of conservation of mass can be expressed by this equation:

(% fD p(x,t)dV =0 (8.3)

for any domain D. We would prefer to state this as an equation involving
functions of points, rather than domains. In order to do that we must know
how to carry through the differentiation implied in (8.3). The problem with
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(8.3) is that we have a variable domain of integration. This can be solved
by replacing that integral by one over D. We shall now briefly interrupt
this discussion with a description of the formula for change of variables in
an integral. This will allow us to compute (8.3).

Suppose now that we are given a one-to-one transformation y = F(x) of a
domain D onto a domain A. We assume that F is continuously differen-
tiable, and its differential is everywhere nonsingular. We shall require also
that dF(x) is orientation-preserving: that is, that it maps the standard basis
E,-»E,—>E; into a right-handed system. Writing x = (x!, x% x%),
y = (3%, ¥%, %), the image of E; under the linear transformation dF(x) is
just (0F/0x')(x). Thus we require that

0F oF JF
51 95 7 5 ™
be a right-handed system, which is the same as asking that

o, ¥ y®)

det
¢ a(xt, x2, x%)

oF oF OF
(9= det( 255 (0, 223 (9 5500 >0
With these hypotheses we have the following formula for integration under
the change of variable F. If fis an integrable function on A, then

a0, ¥2, y%)

e Lid (8.4)

[ 1 av = [ fE) det
A A

We shall defer the derivation of this formula to the end of this section. The
motivating idea is that it is true in the small: if the function fis constant, and
the transformation F is a linear transformation, and D is a rectangle, then
(8.3) just says that the volume of the parallelepiped F(D) is det F - vol(D)
(an easily verified fact). The general case follows by locally approximating
by this case and summing over the whole domain.

Examples

1. Find [px2%y* dV, where B is the unit ball. We use spherical
coordinates for this computation:

x =rsin 0 cos ¢ y =rsin 0 sin ¢ z=rcosf

a(x, y, z) sin 0 cos ¢ r cos 0 cos ¢ —rsin @sin ¢
5 ,0’ = {sin Osin ¢ r cos 0 sin ¢ r sin 0 cos ¢
(r 9, ¢) cos 0 —sin 0 0
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SO

szy4 dv = f: f:t f:rs sin® 6 cos? ¢ sin® ¢ dr d¢ do

- f ar- |

-

cos? ¢ sin® ¢ dep - f sin® 9 d@
4]

1 16 7= 1In

T9 105 16 945

2. [p(x®—y*)dxdy, where D={0<x<1,x—1<y<x} be-
comes

%f: ~[Oluv du dv=%

under the change of variable u =x — y,v=x + y.
3. [s(x* + y* + z%) dx dy dz, where B is the domain
B={x?+3»?<1,0<2z<2}

This can be easily computed in cylindrical coordinates:

2n L1 a2
f(x2+y2+zz)dxdydz=f f f(r2+zz)rd9drdz
B [4] 0 Y0

1 8
=2nf (r3+—3—r)dr
0

We return to our fluid flow given by x = &(x,,t). We shall express it, for
the sake of compution, in coordinates:

(", %%, x%) = dlxo", xo”s X0, 1) (8.5)
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Since (8.5) reduces to the identity for t = 0, we have

a(xt, x2, x*)
e e = I .
a(xol’ xoz’ xo3) t=0 (8.6)

Thus, the determinant

a(xt, x%, x%)
J =det ———5—
{(Xo) € 5(x01, xoza x03)
is positive for all small ¢, so we can apply the change of variable formula to
the computation of (8.3) for fixed small . We now have the mass con-
servation law expressed by

=2 [ v =2 [ ot 0,00,V =[ 2 o)V

(The final equation follows since differentiation under the integral is now
allowable.) Since this must be true for every domain D, the integrand is
identically zero:

G,
= (p7)=0 @7

We can explicitly compute that derivative for ¢ = 0, using (8.6). First,
let us consider

a a 1 2 3
9, __dta(x,x,x)
ot

o 8.8
=0 Ot a(xol, xoz, xoa) ®8)

t=0

The determinant is the usual sum of products of the various partial derivatives
dx'/ox,’. The derivative of such a product will have three terms; in each
one of which only one term is differentiated with respect to £. Each term is
of the form

0 (6r‘)
ot \os*

where {r!, r2, r3} is a permutation of {x', x2, x*}, and {s', 52, s*} a permuta-

or®
)
=0 057 =0

or?
=0 05

8.9
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tion of {x,', Xo%, x°}. According to (8.6)

or

ds

=0if s # 7, ‘;—r

=1lifs=r,
t=0 S

t=0

Thus the only relevant terms (8.9) are those where s* = %, 53 = r,® and, a
fortiori, s* = r,!. Finally, by the equality of mixed partial derivatives,

i(ax") K (axi)
0t \0xo )| Ox' \ 0t /|-

where v = (v', v?, v°) is the velocity field of the flow (recall Equation (8.1)).
Thus, the computation of (8.8) is complete: there are only three relevant
terms, for r! = x!, x?, x3, respectively, and we have

_ o
0 axoi

t=0

]
ot

ot w® d
+

I ===+
eo  Oxo'  0xp2  0xy3

t=0 (8.10)

Definition 1. Let v = (%, v?, v°) be a differentiable vector field defined in a
domain in R®. The divergence of v is the function defined by

. ot
divv= -
i=1 Ox

The name will appear presently to be justified. We now summarize our
discussion in the following assertion.

Proposition 1. (Equation of Continuity) Let v(x, t) be the velocity field of a
Sluid flow, and p(x, t) its density. The law of mass conservation takes this form:

dp dp 3
Frs div(pv) = 5 T Z + pdivv= (8.11)

Proof. Referring to the preceding discussion we have seen from (8.7) that the
law of mass conservation asserts that

2
En (p(b(xo, 1), t) Ji(x0)) =0
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for all ¢, x,. Evaluating at # = 0, this becomes

(P(d’(xo 2 1)y D)e=o * Jo(Xo) + p((Xo, 1), t)) Jx(xo)lr =0
8.12)
3 P a
Z a_ x0,0) (x0,0)+ —(xo,0)+p(xo,0)d1vv(xo,0)

The second expression follows from our computation above terminating in (8.10),
and the fact that Jo(Xo) = 1, Xo = ¢(xo, 0). Now, we could have started our clock
at any time; there is nothing special about the time # = 0 except that our formulas
are most easily computed there. Thus, (8.12) must hold for all (x, t) since it is
valid for all (x0, 0). Thus (8.11) is true. We leave the first equality as an exercise.

Equation (8.11) can be referred to the particle coordinates of the motion:

3
a_p Z (0,)5.0

Ot |x=¢xo,0 =1 Of 0% | x=4(x0, 1)

+ P(¢(Xo H t) t) le (xo’ t) -

which compresses into
. 0x
= P00, 1), 1) + p(d(Xo, 1), ) div == (%o, 1) = 0 (8.13)

This relates the time rate of change of density at a particle with the rate of
change of its position. A fluid flow is called incompressible if the same mass
always occupies the same volume. For an incompressible fluid flow we
must therefore have that |, dV is constant for any initial domain D. Thus

6tf v =— fJ v = fax‘dV fdlvvdV (8.14)
D:

for every domain D. Thus div v = 0 is the necessary and sufficient condition
for a flow to be incompressible. By the equation of continuity (in the form
(8.13)) this is the same as asking that the density at a particle is also in-
dependent of time.

Corollary 1. v is the velocity of flow of an incompressible fluid if and only
ifdivv=0
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Corollary 2. The fluid is incompressible if and only if the density at a
particle is constant under all flows of the fluid.

Now the integral [, divvdV is the rate of expansion of the fluid in D,
according to our computation (8.14). (Hence, the name divergence.) We
could also calculate the “infinitesimal expansion’ of D by calculating the
amount of fluid which enters during an * infinitesimal ”” amount of time, and
subtracting from it the amount of fluid that leaves. The mathematical
expression of this will be an integral over the boundary of the domain D.
The fact that this is the same as [, div v dV is the divergence theorem, which
is a fundamental fact in calculus. We shall return to this theorem and
its implications in Section 8.5.

Examples
4. Consider the flow given by the equations
x=xo(l +1) + tyg y=yo(1 — 1) + 1xg z=7zy¢€'
If D is the original position of a mass of fluid,
D, = {(xo(1 + 1) + tyg, yo(l — 1) + txg, zo€"); (X0, Yo, 20) € D}

and the volume of D, is

o(x, y, z)
dVv = | det ——————dV
ng f a(xo > Yoo ‘O)

= f ¢(1 — 213 dV = é(1 — 2£) vol(D)
D
Since % vol(D,) = jD div v dV for every domain D, we have

0
divv(x, 1) = 5 ¢(l —21%) = é(1 — 4t — 21%)

5. For this flow:

x=xq¢€ y=yoe ' z=2z€ + xo(1 —€)
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we have
ox

—t 1 s
-a-?=(x0e', —Yoe ', zp€ — xp¢€)

s0 v(x,1)=(x, —y,z~—xe ") and divv=1. Thus, for any domain
D, (3/dt) vol(D,) = 1 - vol(D,), so vol(D,) = €' vol(D). If p(x, t) is the
density function at time ¢, the equation of continuity allows us to
find p in terms of its initial values. Let p(x,, 0) = p(x,) be given.
Then, according to (8.13), if §(x,, ?) is the particle density, we have

op
Fis1=0
ar P

P(xg,0) = p(xo)
Thus

Bxo, 1) = p(xg)e™  p(x,1) = e~p(xe™", ye', z — x(e™" — 1)e™)

6. Suppose an incompressible fluid flows steadily in the direction
a = (d', a% a®). That is, the path lines are parallel to the vector a.
Then the speed is constant along the paths. For the velocity field is

v(x, 0) = ¢(x)a

where ¢ is a scalar function (the speed), and since v is divergence free,
we have

d 0
divv=4a1+ ¢
ox

5}
fm =0

But then
dp(x)(a) = (Vé(x),a) =0

for all x, so ¢ is constant along the lines parallel to a; but these are
the paths of motion.
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Integration Under a Coordinate Change

Theorem 8.1. Let (u, v, w) = F(x, y, 2) be an orientation-preserving change
of coordinates valid in the domain D in x, y, z space. Let A = {F(x, y, z):
(x,y,2z)e D}. If g is a function continuous on D, then

o(x, v, z)
o(u, v, w)

Proof. The proof consists in a series of reductions terminating in the one-
variable case. It is enough to show that for any point p € D, this theorem is true
for some rectangle centered at p. For, once this is shown, we may cover D by
finitely many such rectangles Ry, ..., R.. If {p1,..., p.} is a partition of unity
subordinate to {Ry, ..., R}, then p, - g is zero outside R,. The theorem is thus
true for each p; - g. Summing over i, we obtain the general result.

Thus we may concentrate our attention on a particular point po in D, which we
take to be the origin. If the theorem is valid for the coordinate changes u = F(x),
y = G(u), then it is also true for the composed mapping y = G(F(x)), simply because

ng(x, y,2)dxdy dz = f g(F~ Y(u, v, w) det du dv dw
A

a(x?, x2, x¥)  a(x', x2, x3) a(u*, u?, ud)
a(yt, ¥24, ¥ out, u? ud) (9,52, %)

We will decompose our mapping into a composition of four special cases, for each
of which the theorem is easy. The general result will follow by composing these
mappings.

First of all, let T be the linear mapping

o(x, y, 2)
T = a(u, v, W) | wiv. =0 @)
Then F=(F -T)oT-* and F o T has the property that its Jacobian at 0 is the
identity. The theorem is easily seen to be true for a linear mapping (Problem 5), so
we need only prove it for F o T.
Our situation is now this: we are given a change of coordinates (u, v, w) =
G(x, y, z) defined at the origin such that

o(u, v, w)

Ax, y, 2) =1

It follows that

ou, y, 2)
o(x, y, z) ®=1
o(u, v, 2) =1

Ax, y, 2)
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Thus, by the inverse mapping theorem there is a neighborhood B of 0 in which
(x,¥, 2),(u, y, z), (u, v, z), (u, v, w) are all bona fide orientation-preserving coordinate
systems. If we denote the respective coordinate changes as follow

Fi(x,y,2) =%y, 2)
Fz(u, Vs Z) = (ll, v, Z)
Fa(u, v, 2) =(u, v, w)

then F =F; o F; o F;. Each F, changes only one coordinate at a time, and we need
only to prove the theorem for each F,;. Since the proof of each case is the same,
we shall do it only once.

Now, here we do our computation. Let

u=nhx,y,z)
v=y
W=z

be a coordinate change defined on a rectangle
R={—a<x<a, —b<y<bh —c<z<c}
centered at the origin. Let
A={(w,o,w): u=h(x,v,w), —a<x<a, —b<v<b, —c<w<c}

If now g is a continuous function on R,

L g(x,y,2)dx dydz = fj J._c [f_a g(x, »,2) dx] dy dz (8.15)

Now, according to the theorem of change of variable in one dimension

a h(a,y,z) oh™!
[ oy aan=["" g0y, 2 0.) %0y,
—-a h(-a,y,z) ou

Thus (8.15) becomes

-1

b c h(a,v,w) ah
f f [I gth~(u, v, w, v, w)) — (1, v, w) du] dv dw
-b Ve h(—a,v,w) au

ax, ,
- f 9w v, w, v, w) det 222 g do
a (u, v, w)
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The last equation follows from

oh 8h oh
au, v, w) ox 0oy oz
a,y,2) 10 1 0

0 0 1

o(x, ¥, 2) _ o(u, v, w)\ 1 _ o\t oht
det(a(u, v, w)) o det(a(x, ¥, z)) a (gc) ~ Tou

o EXERCISES

1. Compute the area of these domains, using either spherical or cylin-
drical coordinates:
(@ x*+y*+z22=xyz
(b) 1>x2+3y?—22>0
©) x*+y*<z<l1
d) a*x*+ b3y + 22 <1
2. Integrate f over the domain D:
@ fE)=x*»2* D={x+y'+22<1}
(b) f(x)=xyz D={x*4+y*<l1 0<z<1}
©) fOx)=x>+3y*—2z2 D={ax*>+b»*<1 0<z<x*+y%
(@ f(x)=rsin®fcos? ¢ D={0<x(x*+y*+ 2z <1}
3. What is the mass of a parabolic section:

0<z<alx*+y?

whose density is proportional to the distance from the xy plane?
4. Find the mass of the ball of radius 1, whose density is p(x) = (1 4+ ).
5. Let

X =Xo+ tyo y=yoe — 2o z=2Zz0e '+ tXo

be the equations of a flow in space.
(a) Compute the velocity field v(x, 7).
(b) Compute the divergence of the flow.
(c) Assuming an initial density function which is constant, find the
density function p(x, f).
(d) What is the mass of the fluid in the unit cube at time t =17?
6. Which of these fluid flows is incompressible?
(@ vx,1)=(~2zx17)
b) v, t)=@E"—x%z—y2)
(©) x=x0¢+ 1=y, y=voe "+ (1 —1)z0,z=€""20
(d x=x0co8t+yosint y=yoCOSt—Xo sint z=az(l+1)
(e) v(x,t)=C(xcost, xysint, ze')
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7. Find the volume at time ¢ = 1 of the mass of fluid originally in the unit
sphere under these flows:
(a) Exercise 6(a). (b) Exercise 6(c). (c) Exercise 6(d).
8. Show that a C?2 function in R® is harmonic if and only if it is the
potential of the vector field of an incompressible flow. (Hint: div Vf = Af)

e PROBLEMS
1. A radial field is a field of the form

v(x) = $(lIx|)x

Find all incompressible radial fields.

2. If L is a line in R3, a flow around the axis L is one whose velocity field
at any point is tangent to the cylinder with central line L. Show that the
flow of Exercise 6(d) is a flow around the z axis. Find another such flow
which is incompressible.

3. Find the incompressible flow whose path lines are the curves

X=xo+u y=yo+sinu zZ=12

4. Find the incompressible flow whose path lines are the curves (in
cylindrical coordinates)

z=Cr* 0=20,
(see Figure 8.1).
5. Prove Theorem 1 for the coordinate change u = T(x), where T is a

nonsingular linear transformation.
6. In the proof of Theorem 1, a function

u=hx,y, z)

was found. It was tacitly assumed that dh/éx >0. Why is that so?
Express oh~!/9u in terms of the original functions («, v, w) = G(x, y, 2).

8.2 Curl and Rotation

The divergence of the velocity field of a flow measures the rate of expansion
of the fluid in flow as we have seen. We shall now compute an indicator of
its rotation around a given axis. Suppose

X = ¢(xo, 1) (8.16)
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N

Figure 8.1

1s the equation of motion of the flow. Let x, be any point, and n a direction
(unit) vector at the point x,. We shall compute the average angular velocity
in the plane orthogonal to n at the point x, in terms of the velocity field v.
We take x = 0 for convenience. Since we are interested in the motion around
the axis n, relative to the motion of 0, we must work in coordinates relative
to 0. What is the same, we shall subtract from the above motion a motion
of translation by the image of 0, so that 0 remains fixed. Since translation
involves no rotation, our computation will be valid for the original motion.
Thus we replace (8.16) by the flow

x=\l’(x05t) :d)(xOst) =¢(0s t) (817)

so that in our new motion the origin is fixed.

Let C, be a circle of radius r centered at 0 lying in the plane IT(n) orthogonal
ton. Letabeapoint on C,. After a time ¢, the particle originally at a has
moved to Y(a, ). Let L be the projection of yi(a, #) — a onto the line tangent
to C, at a (see Figure 8.2). Let 6(¢) be the angle at 0 in II(n) between a and
a+ L. Thus 6(¢) is the angle in the plane orthogonal to n through which a
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Figure 8.2

has moved (relative to 0) during the time ¢#. Thus

L_ o@D —y@, T

0(t) =sin"' ==
r r

when T is the unit tangent vector to C, at a. Dividing by ¢ and letting
t - 0, we obtain the angular velocity for the particle a in Il(n) as
_ L

Ly o
(sm 7) =0 (L= (L7 ,=O=<5 (a,0), T>

= <V(a, 0) - V(O, 0)’ T>
according to (8.17). The sum over all of C, of this angular velocity is called
the total circulation of the flow about C, and is denoted circ(C,). Thus

cire(C,) = f (v(a, 0) — ¥(0, 0), T ds (8.18)
¢

This number, calculated for small r gives us some idea of the instantaneous
rotation of the flow around n at 0. If we suitably normalize ((8.17) tends
to zero as fast as r —» 0), and take the limit as r — 0 we will have the same kind
of information, but it will be given by a point function, rather than a function
of circles.

Definition 2. Let v be the velocity field of a flow in a domain D. For
each point X, in D, and unit vector n define the curl of the flow about n at x,
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to be

curl v(x,, n) =1lim c1r<;gC,) (8.19)

r—0

where C, is the circle of radius r centered at x,, in the plane orthogonal to n.
Example
7. Consider the flow (Figure 8.3)
X =XoC08t+ y,sint Y = Yo COS t — X, 8in ¢ z2=29+1t
Let us take xo = (1,0,0) and n = E,. Then, as we have already seen

v(x, t) = (ys —X, 1)

Figure 8.3
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If we take

C,={x—1+rcos§,y=rsinf,z=0}
r r

then

cire(C,) = f v(x) — ¥(1, 0, 0), T ds
Cr

2n
=f <(rsinf—rcosf,0),(—sins,coss,0)>ds
0 r r

2n
= [ (=rrdo=—2m?
0

Thus the xy plane rotates around (1, 0, 0) in the negative sense (with
constant angular velocity), as ¢ changes. If now we take n = E,, we
have

s .S
C,={x=1,y=rcos—,z=rs1n—:
r r

2n
circ(C,) = f <(r cosf, -1, 1), (0, —r sinf, ¥ COS E)> ds
0 r ¥ r

=0

Thus there is no rotation in this plane.

Now, we shall compute the curl explicitly in terms of the velocity field v.
Again take x, = 0 and let a =(a!, 2, «®), p = (B, B2, B>) be two unit vectors
in the plane orthogonal to n so that @ — p — n is a right-handed orthonormal

basis.

Thusn=a x B, so

n= (a2B3 _ a3ﬁ2, asﬁl _ txlﬁ3, Otlﬂz _ Otzﬂl) (820)

For a time we shall compute relative to this basis. C, has this parametriza-

tion

x=x(s)=rcos5-a+rsin§-p (8.21)
r



8.2 Curl and Rotation 629

The tangent vector is
. S s
T(s) = —sm;-a+cos--|}
-

Expanding the velocity field in terms of this basis:
v(x, 0) — v(0, 0) = v*(x)a + v(x)B + v"(X)n

Then
cire (C,) = jc ¢v(x, 0) — %(0, 0), T(x) ds
- f: (— v4(x(s)) sin ; + vP(x(s)) cos ;) ds (8.22)

Now, substitute = s/r in the integral and approximate the »* (v = o, )
by their differentials:

v'(x(9)) = v"(0) + dv*(0)(x(8)) + £*(Ix)
where

Ixi~le'(x) >0 as x| >0 (8.23)
Since v"(0) = 0, using (8.21) for x(#), we have

v"(x(8)) = r cos 0 - dv(0)(a) + r sin 6 - dv"(0)(B) = &*(Ix[))

Substituting these expressions into (8.22), we obtain
2
circ (C,) = f [ — dv*(0)(ex) + dv*(0)(B)]r* cos O sin 6 dO
0
2n
+ f [ — dv*(0)(B) sin? 6 + dv’(0)(ax) cos® ]r* db
0

+ fzn(—s"(x) cos 6 + £#(x) sin B)r df
0
= [ - do*(0)(B) + dv*(0)(@)]

2n
+r f [ —&%(x) cos 0 + ¢%(x) sin 6] df
0
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Dividing by nr?, and letting r — 0, the second term disappears because of
(8.23) and we obtain

curl v(0, n) = dv?(0)(a) — dv*(0)(B) (8.249)

This can be rewritten in terms of the vector n. Let v = (v%, v2, v3) in terms
of the standard Fuclidean coordinates. Then

(%, 0) = <¥(x, 0) = ¥(0, 0), o) = ¥ [v(x, 0) — v(0, 01

sO
3 o0t ..
a —_ i ] At
drO)B) = 3. 7 b
Similarly,
3 i

aO)) = 3. 2 olf

&1 ox
(8.24) can be expanded out as
3 i

0
curl v(0, ) = . 0

i=1 8xj

L3 A
JA J t
aﬁ i;1axjﬁa

vi

3 0 - ipi
=i;'a;}(0‘ﬁ —o'f’)

o 2 0 3 F 3 3 1
= (5%5 — a_;:z)(azﬂs —a3BY + ( v —03)(053[31 ey

ax' ox
ot v
+ (2 - S)as - oY 829
Referring back to (8.20) we see that this is the inner product of a vector
derived from v with the given unit vector n. We collect these results in a

definition and a proposition.

Definition 3. If v= (v, v%, v*) is a vector field defined in a domain in
R3, we defined the vector field curl v by

curl v = (6_ ————— y—s — — (8.26)
X
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Proposition 2. If v is the velocity field of a fluid flow, the curl of v at Xg
around the direction n at time t is given by curl {v(xq, 1), n).

Proof. Equation (8.25) is just <curl v, n>.
Definition 4. A flow with velocity field v is called irrotational if curl v = 0.
Examples
8. Let ¥(x) = (-, x, 1) (as in Example 6). Then
curlv= (0,0, —2)
Thus for any plane IT = {p: {p ~ x, n) = 0} through x, the rotation
in that plane has angular velocity —2<n, E;>. Thus the maximum

rotation is about the z axis.

In general, curl v(x) spans the axis of the *infinitesimal”’ rotation about
x and its magnitude is the angular velocity.

9, Let
X =xo(l + 1) + yo(1 — &) y=yoe ! z=2z4(1+1)

be the equations of a flow. The velocity field is

x —yet — (2 + t)ye* z
v(x’t)=( 1+1¢ Th T

thus

- — (2 4+ t)e*
curl v(x, t) = (O, 0, e—(_—-)_)
1+t

so again the rotation at any point is about the z axis. Notice that the
equations break down at t = —1. We can consider that as the initial
point of the motion: the fluid came, at = —1 spinning off the xy
plane with infinite angular velocity.

The form of curl v recalls the discussion of closed and exact forms in the
previous chapter. If we consider the differential 1-form w = v, dx)
associated to the vector field v, then curl v = 0 is the necessary condition for
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o to be the differential of a function (and by Poincaré’s lemma it is locally
sufficient). In particular, if the field is conservative, then the flow induced
by the field is irrotational.

We can make physical sense of this statement by referring it to the
acceleration field a = dv/0¢ of the flow rather than the velocity field. By
Newton’s law this is essentially the field of forces which generates the flow.
As we have seen, if this field is conservative, then the work done by the flow
in moving a mass from one point to another is precisely what is needed; it
is the same as the change in energy level. For this to be the case no work
can be expended in wastelessly rotating the mass; hence the field is irrotational.

In the theory of electromagnetism the existence of two fields, the electric
E, and the magnetic H, is postulated. Certain relations between these
fields, corroborated by experimental evidence form the basic laws of the
subject. These are Maxwell’s equations. Two of these are

curlE+aaa—}tI=0, divH=0

(o a suitable constant), which state that the rate of change of the magnetic
field is determined by the rotation of the electric field, and that the ““ mag-
netic flow ” is incompressible.

Here are several important relations between the gradient, curl, and
divergence which are easily derived.

curl V/ =0 (8.27)

divcurl v=20 (8.28)

div Vf = Af (8.29)

curl fv =fecurlv+ Vf x v (8.30)

div (fv) =fdivv + VS, v> (8.31)

Example

10. Suppose
A=(-x,0,y)

is the acceleration field of a fluid in motion. Find the equations of
motion, assuming an initial velocity field of (0, 1, 0), and find the
divergence and curl of the flow.
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If x = ¢(x,, ¢) is the equation of motion, we have
¢(x0 ’ 0) =Xp

¢
E{(XOa 0) = (Os 1, 0)

and ¢(x,, ) solves the differential equation
*, 5, 2)" =(-x,0,y)

The general solutions are
x=Aycost + Bysin ¢t

y=A, + B¢t

A B
z=A2+BZt+71t2+—3-1t3

The initial conditions give these as the equations of motion:

X = xo cos ¢
Y=Y+t

T
z2=2ZpT)o 573
The velocity field is

V(x,t)=(—xtant, 1, ty)
divV(x,t) = —tant

curl V(x,¢) = (—1¢,0,0)

633

Notice that at ¢ = n/2 the holocaust arrives. Before that moment,
our fluid is moving generally in the positive y direction, rotating
clockwise around the line parallel to the x axis and spinning away

from it (¢ < 0) and back again toward it when 7 > 0.
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® EXERCISES

9. Compute the curl for these fluid flows:
@ x=x0+1tyo y=yoe' — tzo z=2zpe '+ txo
(b) V(x, Vs Z)=(—Z, X, y)
©) v(x,y,2)=(y,z,%)
(d) The flow described in Exercise 6(b).
(e) The flow of Exercise 6(c).
(f) The flow of Exercise 6(e).
10. Verify Equations (8.27)—(8.31).
11. Find the equations of motion and analyze the flow as in Example 8
given this acceleration field and initial velocity:
@ A=(—y,x1) V(x)=0
) A=(x,z x) V(x0) =(0,0,1)
12. Compute the rotation at x, about the E, axis for the flow of Ex-
ample 6.

® PROBLEMS

7. Suppose we are given a time-independent field of forces F in a medium
of constant density (say = 1). By Newton’s law the fluid will flow according
to the equation F = A. Let D be a small ball of fluid. The kinetic energy
of D at time ¢ is

1
P 2
21, \2 14

where v is the velocity field of the flow. Show that the work done by F in
moving D to D, is equal to the change in kinetic energy. (Hint:

ofar(IvI?) = <v, F>.)

8. Verify these identities:
(a) curl gVf=Vg x Vf
() curl fVf=0
9. Show that if u, v are curl-free vector fields, then u X v is divergence
free.
10. Show that in a ball, a vector field is a gradient if and only if its curl
is zero.
11. Let M be a 3 x 3 matrix, and consider the flow

x = exp(M1)xo
(a) Compute the divergence and curl of the velocity field of the flow.

(b) Show that the flow is divergence free if and only if tr M =0
(c) Show that the flow is curl free if and only if M is symmetric.
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12. Consider the flow
x = exp(M1)x,

where M is a symmetric matrix

(a) Show that the velocity field of the flow is conservative and has
the potential function

1
II(x) = 3 {Mx, x>

(b) Show that the flow in an eigenspace with eigenvalue a is in a
straight line either toward the origin (a < 0), or away from the origin
(a >0).

(c) Diagram the flow lines for such a flow in the plane in case the
eigenvalues (i) are the same; (ii) have the same sign; (iii) have opposite
signs.

8.3 Surfaces

A surface in R? is (as we have been using the notion in this text) a subset
of R® which is two dimensional. By this we mean that every point has some
neighborhood which can be put into one-to-one correspondence with a
domain in the plane. We shall assume that this correspondence is smooth.
It is given by a continuously differentiable mapping with a nonsingularity
condition on its differential.

P2

Definition 5. A surface patch in R® is the image of a domain D in R?
under a map x = x(u, v) with these properties:

(i) x is one-to-one.
(i) x is continuously differentiable.
(iii) The vectors 0x/du, 0x/dv are independent at every point. (u, v) are
called the parameters for the surface patch. The curves # = constant, and
v = constant are called the parametric curves.

A surface is a set X in R® which can be covered by surface patches, that
is, every point p on X has a neighborhood N such that T n N is a surface
patch.

Notice that if we fix u = ¢, then the function ¢(v) = x(c, v) parametrizes a
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curve (since § is also one-to-one and

dd  ox

dv v

is everywhere nonzero). The vector dx/dv is thus the tangent vector to the
parametric curve u = constant. Condition (iii) asks that the curves u = c,
v=c" at any point have independent tangents. Another way of phrasing
(iii) is that the 2 x 3 matrix

0x
u
0x
ov
has rank 2.

Examples

11. The sphere: x2 + y* +z? =1 (Figure 8.4). Near the point
(0,0, 1) we can write z as a function of x and y on the plane: z =
(1 —x2—y»»H'/2, Thus we can use x, y to define a surface patch
surrounding (0, 0, 1):

x = x(u, 0) = (, v, (1 —” —*)1/?)

Z

z= (I_x'.'_y'_‘)l/:

Figure 8.4
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=

Figure 8.5

which coordinatizes the upper hemisphere as u, v range through the
disk #?> + v2 < 1. Since

_ax_ 2 2y—1/2

xu—au—(l,O,—u(l—u — )7V
7]

X, = == (0,1, —o(1 — u? — p?)~1/2)
ov

these vectors are independent. Every point on the sphere can be put
in such a surface patch, by permuting the roles of (x, y, z) above.
For example, the point (~1, 0, 0) lies in the surface patch given by

x=x(w,0) =(—(1 - =), u,0v) W +v2<l

Spherical coordinates can be used to coordinatize the whole sphere
except for the points (0,0, +1):

x = x(0, ¢) = (cos 0 cos ¢, cos 8 sin ¢, sin 0)
12. The ellipsoid (Figure 8.5)
@x* +by? + 22 =1
is also easily parametrized by spherical coordinates (again except for

z=+c¢71):

cos ucosv cosusinv sin u)

x=x(u,v)=( p s 5 p
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1-(x*+y%)

Figure 8.6

13. The paraboloid z = x? + y? (Figure 8.6) is a surface patch: it
is coordinated by

X = x(u, v) = (u, v, u* + v?)
Since x, = (1, 0, 2u), x, = (0, 1, 2v), they are independent.

14. The cone z = (x% + y?)¥/? (Figure 8.7) can be coordinatized,
except for the vertex, by

x=x(u,0) =0, W +vH"?  u#£0, v£0

We might ask if there is any way to coordinatize a neighborhood of the
vertex of the cone. It is quite difficult to show that there exists no function
which does so, but there is one important implication of the differentiability
of such a function which is easy to check out. The differentiability implies
good approximability by linear functions, thus we should anticipate the
existence of a linear surface (a plane) which comes “ nearest” the surface at
a given point. This is the tangent plane; which we shall now describe by
limiting arguments as in the case of the tangent line to a curve.

Suppose p is a point on a surface X and g, r are two nearby points. The
three points p, g, r (in general) determine a plane. As g, r tend to p, this
plane will (in general) attain a limiting position: this is the tangent plane.
We now compute this process with coordinates. Suppose the function
x = x(u}, u?), (', u?) € Dcoordinatizes Tnearp. We may assumep = x(0, 0) =
0. Letq=x(u',4?), r=x(",v?). The plane II(q, r) through p, g, r is then



8.3 Surfaces 639
the set of all vectors perpendicular to
q x r=x(u', u?) x x(v!, v?) (8.32)
In order to take the limit we approximate x by its differential
x(u', u?) = x,(0)u' + x,(0) + &(||ul)
where ¢ ~1g(f) » 0 as t - 0. Equation (8.32) becomes
q x r=(%,(0) x x,(0))(m'v?® — ") + R (8.33)

where we have combined all the error terms in the expression R. The
important behavior of R is this:

R(u, v) = flufley([Ivll) + Nvilex(ul) + es(fluldeClivi)

where the ¢; all have the same behavior: ¢t “*s(tf) >0 as t —» 0.

Now, so as to treat the remainder R as an insignificant remainder, we must
be careful with the term u'v? - uw?v!. It may, for example, be zero, in which
case the remainder becomes very significant. Thus we must assume that

Z
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this terms tends to zero more slowly than R as q,r — p. Since
ulv? —w?v' = sin ¢(lulD(|vI)

it suffices to assume that the angle between the coordinate vectors does not
tend to zero as q,r —» p. Then, under this assumption, we can divide (8.33)
by u'v? — u*v', obtaining I(q, r) as the plane through p orthogonal to the
vector

x,(0) x x,(0) + R?

where R! -0 as q, r—p. Thus the limiting position of II(q, r) is the plane
orthogonal to (9x/0u*) x (6x/0u?) at p: it is the plane spanned by

0x 0x
5 ), Fw )

Definition 6. Let p be a point on a surface ¥ coordinatized by x = x(u!, #?).
The tangent plane to T at p is the plane spanned by the vectors 0x/du’, 0x/ou?
at p.

Proposition 3. Let p be a point on the surface X, and let T1(q, r) be the plane
spanned by two points q, T on X so that the angle between q — p and x — p is
nonzero. If q,r—p so that this angle remains bounded away from zero,
then T1(q, r) tends to the plane tangent to X at p.

Of course the angle assumption is crucial, Problem 28 exhibits the difficulty
obtained without it.

Examples

15. There is no tangent plane to the cone

z = (xl + y2)1/2

at its vertex (Figure 8.7). For, if we take q, = (2,0, 1), q, = (0, 1, 1),
the plane spanned by q, and q, is the plane spanned by (1,0, 1),
(0,1, 1) for all £ » 0. Thus this is a candidate for the tangent plane.
However, if we consider now the points §, = (~1,0,¢), i, = (0, —¢,1)
for t > 0, the candidate we obtain is the plane spanned by (-1, 0, 1),
(0, —1,1). Since these two planes are distinct, there can be no
tangent plane (Figure 8.8).
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Figure 8.8

16. The cylinder x% + 2 = 1 is a surface. It can be coordinatized
by using cylindrical coordinates:

= x(u, v) = (cos u, sin u, v)
= (—sin u, cos u, 0)

X
xll
x,=(0,0,1)

The tangent plane at x(, v) is the plane orthogonal to the vector
X, X X, = (cos u, sin u, 0).

17. If x = x(s) is the equation of a curve, the * surface swept out™
by its family of tangent lines is a surface. It is parametrized by

X = X(s, t) = x(s) + tT(5)
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We have

x, = T(s) + txIN(s) x, = T(s)

Thus, so long as x # 0, s, t are patch coordinates for all s, > 0. This
surface is called the developable defined by the curve. Its tangent
plane at the point (s, t) is the same as the osculating plane to the
curve at x(s).

Let ¥ be a surface, and p a point on the surface. We shall denote the
tangent plane to X at p by T(p). If x = x(u, v) parametrizes X in a neighbor-
hood of p, with p = x(u,, v,), then the vectors 0x/du(uy , vy), 0X/dv(uy, vg)
span the plane T(p). The inner product on R® induces an inner product
on this plane just by restriction. It will be valuable to us to see how to
express this inner product in terms of the basis x,, x,. If t =ax, + bx, is
a vector in T(p) its length is given by

It)2 = <t, £ = a®(x,, X, + 2ab{x,, X,) + b*(x,, X,)
Suppose that Cis a curve on X. Choose a parametrization of C:

x=g(s) O0<s<L (8.34)
Let (u(s), v(s)) be the (v, v) coordinates of g(s). Then (8.34) is the same as

x = x(u(s), u(s)) (8.35)
and by the chain rule, the tangent to C is

du dv
and

du\? du dv dv\?
T = () +2med E R+ cx(Z) 639

We shall use these following notational conventions relative to coordinates
onZX:

E=<x,%) F=<{x,%> G=<x,X, (8.37)
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In terms of this notation we have this way, intrinsic to the surface, for com-
puting the lengths of curves on X:

Proposition 4. Let X be a surface patch parametrized by x = x(u, v).
Let C be a curve on X parametrized by x = x(u(t), v(t)). a<t<b. Then
the length of C is

b du)\? du dv\? dv\211/2
E(Z) +or(22 e .
f[ (dt) + (dt dt) +G(dt)] dt (8.38)
Proof. The length of Cis

[ imiar

which is, by (8.36), given by (8.38).
We shall adopt the convention (borrowed from the differential form
notation) that ds is the integrand which gives arc length along a curve. This

means just that the length of any curve C is [ ds. According to (8.38) we
can be assured that

du\? du dv dv\ 2112
ds=[E(dT) “F(M)*G(z)] at

for any parameter ¢ along C. We can also write this as
ds® = Edu® + 2F du dv + G dv* (8.39)
Definition 7. The form (8.39), where E, F, G are given by (8.37) relative toa
parametrization x = x(u, v) on X is called the first fundamental form of X.
If C;, C, are two curves given parametrically by
Cy:u=u(s) v = 1,(5)
Cy:u = u,(s) v = 0,(5)

then their tangents are

dul dvl _ du2 d”z
Tl—Xu-d—s-l-Xu—d—s Tz—xu dS+xv ds
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At a point of intersection p the vectors T,(p), T,(p) lie in the tangent plane
at p and their inner product is

(T, T,) = gty du, F(dul vy | %f‘h’_l) ¢ %1 dv;

ds ds ds ds ds ds ds ds
The curves are orthogonal at p if (T;, T,> =0

Proposition 5. The parametric curves u = constant, v = constant on a
surface patch are orthogonal if and only if F = 0.

Proof. The tangent line to u = c is spanned by x,; the tangent line to v=¢
is spanned by x,. These lines are orthogonal if and only if {x., X,>) =F=0.

Examples
18. The plane z =0. In the standard rectangular coordinates we

have ds? = dx® + dy®. If x =f(f), y =g(t), 0 < s < L, is any curve
joining @ to b we have (as in Chapter 5) the length of L is

[+ gar1 a

If we parametrize this curve by x we obtain the length as

a2 dy 1/2
fﬂl [1 * (dx) ] dx

This is minimized when dy/dx = 0; that is, when the curve is a straight
line. This conforms with known facts.

19. The cylinder
X = X(u, v) = (cos u, sin u, v)

Here x, = (—sinu, cos, 0), x,=(0,0,1). Thus E=1=G, F=0,
80

ds® = du® + dv®

Again, the length of a curve given as v = v(u) is

AN
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so the curves of minimal length (called geodesics) on the cylinder are
those represented by straight lines in the u, v coordinates. Thus the
typical geodesic on the cylinder is the helix
x =(cos ¢, sin t, at)

20. For the sphere
x = x(u, v) = (cos u cos v, ¢Os u 8in v, sin )
wehave E=1, F=0, G =cos®>u. Thus
ds? = du® + cos® u dv®
Once again, we discover the geodesics by minimizing the integral
j‘y ds. Let a, b be two points on the sphere; by rotating the sphere

we may suppose that a, b lie on the longitude v = 0. If y is any curve
joining a to b, the length of 7 is

b b
[ ds= | (@u? + cos? u av*)'r2 (8.40)
The length of the longitude (1 = 0) is

[y = au (8.41)

Now (8.40) is always larger than (8.41) unless dv = 0 along y; that is,
v is constant. Thus it is the longitude which is the curve of the
shortest distance between a and b. By rotating back again we con-
clude that the geodesics on the sphere are the sections by diametric
planes: the great circles.

Geodesics

The problem of finding the geodesics on any surface is more difficult,
because the general form

Edu? + 2F du dv + G dv?

is harder to analyze. One way to proceed is to try to find coordinates so
that the first fundamental form looks like the above examples: it has the



646 8 Potential Theory in Three Dimensions

form
ds? = du® + G dv? (8.42)

When this is the case we can verify that the curves v = constant are geodesics
(Problem 17). However, in order to find such coordinates, we must know
what we are looking for; that is, we must know how to find geodesics in the
first place. Thus, this line of reasoning has to be supplemented by the
discovery of a characteristic property of geodesics. We seek such a charac-
teristic property by trying to understand the *infinitesimal” behavior of a
geodesic: this (we hope) leads to a differential equation which is solvable.
Then we can carry out our original plan: solving the differential equations
will provide a convenient coordinate system in which we can discover the
curves of minimal length. We shall, however, not carry through the entire
program here; we shall only derive the basic property.

If y is a geodesic, a curve of minimal length, on the surface Z, then,
relative to ¥ it is a straight line. That is, it would have to be as close to a
straight line as it could be: it should bend only as much as it must in order
to remain on . Thus the rate of change of the tangent, relative to Z, should
be zero. Infinitesimally this says that the normal to the curve has no com-
ponent on the tangent plane to X. We shall now show that a geodesic has
this property.

Theorem 8.2, Let y be a geodesic (curve of minimal length) on the surface
X. Then, at any point p on Yy, the normal to y is orthogonal to the tangent plane

of .

Proof. Letpe<y and let u, v be coordinates for X near p so that p = (%(0), v(0)).
We may choose these coordinates so that y is the curve v =0 and so that the
coordinates are everywhere orthogonal (see Problems 9 and 10). Now let a be
small enough so that the interval from (—a, 0) to (g, 0) in the uv plane lies on the
domain D of the coordinates. If I': v = f(u) defines a curve lying in D and joining
(—a, 0) to (a, 0), then x = x(u, f(u)), —a < u < a gives another curve on X, joining
two points of ¢ (Figure 8.9). The length of I" is no more than that of v, since y
is a geodesic.

Figure 8.9
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We have not yet done enough to investigate the local behavior of y; we must

consider a whole family of curves including y rather than just one other. But that
is easy to do: let I'; be the curve parametrized by

T x = x(u, tf (w)) —a<u<a

for —1<t<1. vyisToand ' is Ty. Let F(z) be the length of ;. Then F()
has a minimum at ¢ = 0, so (if it is differentiable) F'(0) =0. 'We now compute this:

a

FO = [ It %1 @l du

is certainly a differentiable function of ¢, and
S
F(r) = j 5 I+ X1
Now, at ¢ = 0, the integrand is

2
% Xy + X tf (W), Xu + Xo tf ' (@)>?]i=0

11
2 |1xull

2% f(10) + X0 f (), XD

. Ky Xo)
X ll

fw) (8.43)

The last equation follows from the assumption that the coordinates are orthogonal:
(X, X,> =0. First, the second term drops out, secondly, the expression (8.43)
derives from

0
0=—<{%,%» = {Xuw s Xu) + Ko, Xun)
ou

Therefore, from F’(0) =0, we obtain

* Xy, X Fa)du—=0
- IXall

This equation must hold for all differentiable functions f'such that f(—a) = f(@)=0.
We conclude then that

Xy, Xuw) =0
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along v (see Miscellaneous Problem 41 of Chapter 2). Now, the normal N to y
is in the plane spanned by x, and x,,. Since these are both orthogonal to x,,
N x,. Further, N is orthogonal to the tangent line of y which is spanned by x,.
Thus N is orthogonal to both x, and x,, so is orthogonal to the tangent plane of X.

Examples
21. Find the geodesics on the surface
Tiy=ux?

We parametrize T by x = x(u, v) = (4, 4>, v). Let u=u(s), v =v(s)
parametrize a geodesic I' on £;,. Then I' has the form

x = (u(s), u*(s), v(s))
and

x, = (', 2uu’, V')

x,, = N= W', 2W)* + 2uu’, v")
For I to be a geodesic, this must be orthogonal to both
x, = (1, 2u, 0) x,=(0,0,1)

Thus, the functions u(s), v(s) parametrizing the geodesic I" satisfy these
differential equations

u" + 2u[2W)? + 2uu’] =0
v"'=0
Notice that from Picard’s theorem the equations

—4u(u’)?
1+ 4u?

n

have unique solutions given the initial values of u, v, ', v’. Thus,
there exists a curve of minimal length in every direction, at every
point.
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22. Find the geodesics on the cone

22 = x? 4 32

Notice that any plane z + x cos ¢ + Y sin @ = b intersects T at right
angles (Figure 8.10). Thus the normal to the curve of intersection is
orthogonal to the surface, and such a plane always intersects T in a

geodesic. More generally, we can compute the equations for any
geodesic using Theorem 8.2

Z:x = x(u, v) = (v cos u, v sin u, v)
X, = (—vsinu, v cos u, 0)

X, = (cos u, sinu, 1)

———

Figure 8.10
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If u = u(s), v = vs) parametrizes a geodesic T', then on I

= (v' cosu — vy’ sin u, v’ sin u + vu’ cos u, v')
Xy = (0" cos u — 20w’ sin u — vu” sin u — v(u’)? cos u,

0" sin u + 20'u’ cos u + vu" cos u — v(u')? sin u, v”

The differential equations are readily computed (and hardly solved
explicitly) by expressing {x,,, X,> = 0, {X,,, X,> = 0.

Surface Area

We would like now to define the area of a surface in a way analogous to
the definition of the length of a curve. We select a collection of points
X;, - .., X, on Z and replace ¥ by the polygonal surface ¥’ whose vertices are
Xy, ..., Xg. If the points x,, ..., X, are very numerous and close to each
other, then the sum of the areas of the faces of X’ is a good approximation
to the area of £. We can then try to define the area of X to be the limit of
such sums as the set of points x,, ..., X, becomes infinitely numerous and
everywhere dense.

Now this definition unfortunately does not work, there are ways of so
partitioning a surface so as to obtain any desired area (for a fuller account see
Spivak, pp. 128-130). Rather than give it all up as a hopeless task because
of this phenomenon, we try a different approach. First, we study the
approximation of area in the small,hoping to generate a plausible formula for
surface area (by plausible 1 mean that approximations to our formula are
also approximations to our notion of area). If the formula turns out to be
intrinsic, that is, independent of parametriz